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Abstract— To be considered autonomous, a robot must be
capable of localizing itself in an unknown environment, while
mapping it at the same time. This problem, known as Simul-
taneous Localization and Mapping is a thriving research area
in robotics nowadays. We present localization and mapping
algorithms for a mobile robot with Ackerman steering geometry
(present in modern automobiles): a HPI Buggy fuel engine mini
car. The maps area modeled as grid occupancy maps and depict
three scenarios of the Mechanical Department building at Uni-
versidad Nacional de Ingenieria. The Monte Carlo Localization
algorithm and the Occupancy Grid Mapping are implemented
for the exploration tasks, tuning the noise parameters from the
robot with experiments in outdoor environments.

I. INTRODUCTION

The Simultaneous Localization and Mapping problem has
received substantial improvement the last decade due to the
advance in computing power and the incorporation of a
probabilistic approach into the area. In this approach, the
movement of the robot is no longer a deterministic process
but a stochastic one, dealing with probabilistic models for the
kinematics and sensor measurement. The amazing results of
this approach were shown in the DARPA Grand Challenge
in 2005, where Sebastian Thrun and the Stanford team won
with Stanley, an AI Robot [4]. How Stanley works and what
algorithms were involved are explained in detail in [5] and
[6].

The foundations for the probabilistic modeling of the robot
and sensors were presented in several books in the past
decade ([1], [2], and [7]). Later on, Snider ([3]) would con-
dense several techniques of path planning for automobiles.

The present work explores the application of localization
and mapping algorithms for vehicles with Ackerman steering
geometries. This report is organized as follows. Section
II describes the maps used for the experiments. Section
III defines the models used to approximate real Ackerman
kinematics, as well as sensor modeling with range finder
lasers. Section IV and V explain the algorithms used for
localization and mapping, respectively. Section VI presents
the details of the experiments, the tuned noise parameters,
and each algorithm setup. Finally, section VII discuss the
results and future work.

*This is a report describing research conducted at GISCIA Lab
(http://giscia.github.io).
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Fig. 2: HPI Buggy modeled for the experiments

II. DATASET

The experiments were performed on three hand-crafted
binary 2D grid maps, presented in Figure 1. They depict
real scenarios of the Mechanical Engineering Department
(MED) at Universidad Nacional de Ingenieria. The first one
shows the east wing of the third floor (1a), presenting some
classroom doors open. The second one (1b) shows the main
hall of the building, located at the first floor, showing some
doors open and furniture. The third map (1c) depicts a part
of a much longer corridor in the library. Here, individual
cubicles can be seen distinguished.

III. MOBILE ROBOT MODELING

A. Ackerman steering geometry

The Ackerman steering geometry is present in most
ground vehicles nowadays, such as cars. This architecture
was designed so that tires dont slip sideways when following
curved paths. The design gives traction to the back wheels
and leaves the steering to the front wheels. For modeling
purposes, this steering geometry is often simplified and
reduced to the well-known Bicycle model (Figure 3). The
following assumptions and considerations are taken into
account for the simplification:
• The set of four wheels is replaced by two, one for

steering (front wheel) and the other for traction supply.
• The robot moves only over a plane.
• The speed and steering angles are not high nor wide,

respectively, but moderate. This assures that the bicycle
model’s approximations are acceptable.

• Tires don’t slip sideways.
The mobile robot modeled for the experiments is a HPI

Baja 5B SS Buggy, an 1/10 scale sandpit vehicle with a 29cc



(a) Map 1: East wing of the third floor (b) Map 2: Main hall (c) Map 3: Entrance to Library

Fig. 1: Binary occupancy grid maps used in simulations. All of them depic scenarios of the Mechanical Engineering
Department (MED).

Fig. 3: Ackerman steering geometry simplified to Bicycle
model for modeling purposes.

fuel engine and Ackerman steering geometry. Figure 2 shows
the Buggy, with width of 30cm and length of 60cm.

B. Kinematic model

The robot state is defined as the triplet (x, y, θ) containing
the robot global position and orientation. The kinematic
model allows to predict the following position state of
the robot, taking into account noise sources inherent to its
movement. Table I defines the variables used in the upcoming
equations. Figure 4 allows identify the state variables in the
Bicycle simplification.

Robot state:
(x, y) coordinates of the robot’s gravity center
θ robot’s global orientation

Kinematic model:
L length of the robot
v robot’s linear velocity
T Time period for state change
ϕ steering angle
εα Probabilistic noise with parameter α

TABLE I: Notation for kinematic model equations

Ideally, the position changing in each state would be given
by the the following deterministic equation.

Fig. 4: Variables used in Kinematic model for the Bicycle
model simplification.

 xt+1

yt+1

θt+1

 =


xt + Tv cos (θ)

yt + Tv sin (θ)

θt +
Tv tan (ϕ)

L

 (1)

However, the real movement of robot is noisy. This noise
is modeled as Gaussian distributions and introduced into the
model through linear (v) and rotational (varphi) velocity
and then spread into position changing. The velocities are
modeled as follow: constants plus Gaussian noise with media
0 and standard deviation dependent on a weighted sum of
the square constant values, as stated in the equation:

(
v̂
ϕ̂

)
=

(
v
ϕ

)
+

(
εα1v2+α2ϕ2

εα3v2+α4ϕ2

)
(2)

Replacing this velocities (eq. 2) in 1 the real movement



model is obtained, as follows:

 x
′

y
′

θ
′

 =


x+ T v̂ cos (θ)

y + T v̂ sin (θ)

θt +
T v̂ tan (ϕ̂)

L

 (3)

The noise parameters α1, α2, α3, and α4 are tuned through
experiments, depending on the sensors and the navigation
environment.

C. Sensor modeling

The sensor modeled for the experiments is a Hoyuko
URG-04LX-UG01 Scanning Laser Rangefinder with the
following features:
• Detectable range from 20 to 5600 mm, 1mm resolution.
• Scanning arc of 240◦arc, 0.36◦angular resolution.
• Scanning time: 100 msec/scan.
• Noise: 25dB or less.
• 5V operating voltage.
The measurement process is modeled as a conditional

probability density depending on current position state, as
follows:

p(zt|xt) =
K∏
k=1

p(zkt |x1:t) (4)

where K is the number of laser-beam measurements gen-
erated by the sensor, and k is each one of this measurements.

Given the high resolution of the sensor modeled, the whole
measurement range is sub-sampled in order to get a smaller
number of measurements and allow the system perform faster
and at real time in a future real implementation.

The measurement model used was likelihood field model,
which overcomes the lack of smoothness present in the
beam-based sensor model. We assume three types of sources
of noise and uncertainty:

1) Measurement noise: Modeled using Gaussians, involv-
ing find the nearest obstacle in the map. Let dist be the
distance from the measurement coordinates (xzkt , yzkt ) and
the nearest object in the map m. Then the probability of a
sensor measurement is given by a zero-centered Gaussian
modeling the sensor noise:

phit(z
k
t |xt,m) = εσ2

hit
dist2 (5)

2) Failures: Max-range readings (Zmax) are assumed
to distinct large likelihood and modeled by a point-mass
distribution pmax centered at Zmax.

pmax(z
k
t |xt,m) = I(z = Zmax) (6)

3) Random measurements: Range finders occasionally
produce entirely unexplained measurements. This measure-
ments will be modeled using a uniform distribution spread
over the entire sensor measurement range [0, Zmax]:

prand(z
k
t |xt,m) =

1

Zmax
, if0 < zkt < Zmax (7)

Fig. 5: Likelihood field for main halls map (Figure 1b).

These three distributions are now mixed by a weighted
average, defined by the parameters zhit, zmax, and zrand
with zhit + zmax + zrand = 1, as follows:

p(zkt |xt,m) = zhit ∗phit+zmax ∗pmax+zrand ∗prand (8)

Figure 5 depicts the likelihood of an obstacle detection as
a function of global x− y coordinates, called the likelihood
field. In this example the main hall map (map2, 1b) is used.

IV. MONTE CARLO LOCALIZATION

For localization in the grid map, the Monte Carlo Local-
ization (MCL) algorithm was used. Between its advantages
worth mentioning we find that:
• It is capable of solving the global localization and, with

the correct modification, kidnapped robot problems.
• It can process raw sensor measurement, no need to

extract features from sensor values.
• It is non-parametric, e.g. it is not bounded to an

unimodal distribution, as is the case for the Extended
Kalman Filter localizer.

The MCL algorithm approximates the posterior of the
model and measurement probabilistic models using the par-
ticles filter. It represents the belief bel(xt) by a set of M
particles χt = {x[1]t , x

[2]
t , ..., x

[M ]
t . The initial belief bel(x0)

is obtained by randomly generating M such particles from
the prior distribution p(x0) (uniform for our experiments),
and assigning the uniform importance factor 1/M to each
particle. Figure 6 shows the basic version of the algorithm.

The accuracy of the approximation is easily determined
by the size of the particle set. Increasing the number of
particles increases the accuracy, but trades off computational
resources.

V. OCCUPANCY GRID MAPPING

Occupancy grid maps address the problem of generating
consistent maps from noisy and uncertain measurement data,
under the assumption that the robot pose is known. The basic
idea is to represent the map as a field of random variables,
arranged in an evenly spaced grid. Each random variable is



Fig. 6: Monte Carlo Localization, a localization algorithm
based on particle filters.

binary and corresponds to the occupancy of the location is
covers.

Occupancy grid mapping algorithms implement approxi-
mate posterior estimation for those random variables, mod-
eled as follows:

p(m|z1:t, x1:t) (9)

where m is the map, z1:t the set of all measurements up to
time t, and x1:t is the path of the robot, that is, the sequence
of all its poses. The controls u1:t play no role in occupancy
grid maps, since the path is already known. Hence, they are
omitted.

The standard occupancy grid approach breaks down the
map estimation problem to one of estimating the map cell
by cell, as follows:

p(m|z1:t, x1:t) = p(mi|z1:t, x1:t) (10)

for all grid cell mi. The occupancy grid mapping algorithm
uses the log-odds representation of occupancy:

lt,i = log
p(mi = 1|z1:t, x1:t)

1− p(mi = 1|z1:t, x1:t)
(11)

with l0 as the prior probability for each cell.

l0 = log
p(mi = 1)

p(mi = 0)
= log

p(mi)

1− p(mi)
(12)

Figure 7 defines the algorithm used. The inverse sen-
sor model implements the inverse measurement model
p(mi|zt, xt) in its log-odds form. This model assigns to all
cells within the sensor range frontier an occupancy value of
locc > l0 if the range of the cell is within α/2 the detected
range, where α controls the width of the frontier. It returns
lfree < l0 if the range to the cell is shorter than the measured
range by more than α/2.

Figure 8 shows an implementation of this inverse sensor
model, where β is the sensor range coverage in radians.

VI. EXPERIMENTS

A. Model parameters tuning

1) Grid dimensions: Each map represents an area of
12x10m2, with grid size of 0.10m.

Fig. 7: The occupancy grid algorithm, a modified version of
the binary Bayes filter.

Fig. 8: A simple inverse measurement model for robots
equipped with range finders.

2) Robot dimensions: The following dimensions and lim-
itations were considered while defining the kinematic motion
model.

• Width: 30cm.
• Large: 60cm.
• Maximum steering angle: 34◦.
• Distance from wheels to longitudinal robot axis: 15cm.

3) Motion model: The noise parameters for the kinematic
motion model were tuned performing outdoor controlled
driving experiments with the HPI Buggy car. These param-
eters, defined as α in section III-B, are given the following
values:

α =


α1

α2

α3

α4

 =


10−3

10−4

10−3

10−4

 (13)

4) Measurement model: The mixing weights for each
distribution considered in p(zkt |xt,m) were tuned while
calibrating the sensor. zhit

zrand
zmax

 =

 0.333
0.111
0.556

 (14)

The intrinsic noise parameter (σhit) was derived from the
data sheet of the sensor and set to 0.0075m or 7.5mm. The
whole coverage range was sub-sampled, taking only 21 ray
samples from a coverage of 200◦.



B. Localization

The localization algorithm was configured with the fol-
lowing parameters and initial setup:
• Number of particles (M ): 500.
• Initial particles’ state (x, y, θ) drawn from uniform

distribution. Particles falling into an occupied grid cell
were resampled until they fall into an unoccupied one.

• Initial weight of particles set to 1/M .
Figures 9, 10, and 11 show the simulations in all three

maps. For each map, three stages of the localization are
shown. The first one (figures 9a, 10a, and 11a) is the initial
state of the particles. The second one (figures 9b, 10b, and
11b) is after a few iterations, when the robots has already
localized itself. The third one (figures 9c, 10c, and 11c)
shows how it keeps localizing itself and converging to an
even more accurate real position over time.

C. Mapping

For mapping experiments, all the route of the robot (po-
sition states x1:t is considered as known. The probability of
an occupied cell, used to define l0 in equation 12, is defined
as the sum of all occupied cells divided by the number of
cells in the map, as follows.

p(mi = 1|z1:t, x1:t) =
∑
i∈nxm I(mi == 1)

n ∗m
(15)

where n and m are the dimensions of the binary grid map.
The relationship between the log form probabilities l0, locc,
and lfree given by

lfree < l0 < locc (16)

is achieved by scaling l0 by certain factor (keeping in mind
that it is negative) as follows:

locc = 0.5 ∗ l0
lfree = 1.5 ∗ l0

(17)

Figure 12, 13 and 14 show the experiments in all three
maps. The inferred occupancy maps show clearly the differ-
ence between obstacles (dark grey cells), free space (white
cells), and unknown areas (grey cells). The red dots show
each position state of the robot.

VII. RESULTS DISCUSSION AND FUTURE WORK

The results obtained in all three maps reassure the ro-
bustness of the algorithms analyzed. Even when high mea-
surement noises delay the algorithms convergence a couple
of iterations more, these always were capable of localize or
infer a valid map.

The Monte Carlo Localization algorithm benefits highly
from the richness wall-surface forms (such as seeing in map
1c), making the algorithm converge in no more than 5 itera-
tions with good features. The first map (1a) was particularly
challenging, since both hallways look alike. After further
navigation, the robot was able to accurately localize itself,
despite having two of three main high probability regions for
the position state in the first iterations.

Fig. 12: Inferred occupancy grid map for map 1.

Fig. 13: Inferred occupancy grid map for map 2.

Fig. 14: Inferred occupancy grid map for map 2.



(a) Particles set initialized (b) After 1 iteration (c) After 105 iterations

Fig. 9: Monte Carlo Localization algorithm experiments in map 1.

(a) Particles set initialized (b) After 6 iteration (c) After 60 iterations

Fig. 10: Monte Carlo Localization algorithm experiments in map 2.

(a) Particles set initialized (b) After 4 iteration (c) After 64 iterations

Fig. 11: Monte Carlo Localization algorithm experiments in map 3.

The Occupancy grid mapping algorithm output is highly
dependent of the kinematic model for the robot, since slight
deviations could propagate and produce a distorted map,
without proper noise modeling. Maps rich in wall-surface (1b
and 1c) forms normally need more than one lap of navigation
in order to get a high quality map.

Future lines research in robot navigation for this kind
of mobiles include vision-based and graph-based SLAM
techniques; 3D robot navigation with drones; and the combi-
nation of visual, sensorial and textual information about the
environment ([8], [9], [10], [11]).
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