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ABSTRACT
Talent shortage is a well-known problem that industry has
been dealing with for several years now, with a large number
of engineering vacant positions being difficult to fill. We
present an analysis of the Peruvian labor market demand
based on data collected from job ads available on the web.

We use topic models, a type of mixed-memberships mod-
els, in order to infer semantic categories in co-occurrence of
words by focusing in the functions, requirements and pro-
fessions requested in the job position. This information is
extracted by applying shallow parsing over the ads before
feeding them to the models. Models using the whole text
from the ads are compared to models using only the text
chunks extracted with shallow parsing.

Our analysis reveal that using the extracted text chunks,
some redundant categories are joined while others are split-
ted into more skill-specific categories. Fine-grained cate-
gories observed in models using the whole text are pre-
served.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Language parsing and understanding, Text analysis;
K.3.2 [Computers and Education]: Computer and In-
formation Science Education—curriculum
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1. INTRODUCTION
The economic growth many South American countries

have experienced during the last years has boosted the de-
mand of high-specialized job positions, which often require
multidisciplinary expertise. Many local employers are hav-
ing a hard time finding qualified workers, especially in tech-
nical fields [16].

For educational institutions around the world, and South
America is not the exception, it is not always clear what
majors they should offer or what competencies they should
emphasize in their curricula [17, 21]. Xue [11] analyzes if
there is in fact a “STEM crisis or a STEM surplus” in the
US, reporting that depending on the major and sector, it
can be one or another.

This paper contributes an analysis of the Peruvian labor
market demand, in an effort to unveil the influence of the
academic background in the search for the ideal job ap-
plicant, regarding to what skills engineering professionals
should have according to the industry.

To model the hidden relationship between academic back-
ground and skills required for a specific job vacancy, we ex-
tract requirements, functions for the job, and undergraduate
background information by applying shallow parsing. The
effects of using the above information versus using the whole
text in the job ad as input for a carefully tuned topic model,
are analyzed.

The machine learning techniques used in this analysis are
explained in detail in sections 4 and 5. Section 6 explains the
experiments performed and section 7 presents the discussion
of results.



2. RELATED WORK
Mixed membership models, especially topic models, have

received a lot of attention in the past few years regarding
efficient inference algorithms and proper syntonization of hy-
perparameters [2], as well as recommended experiments [8].

Latent Dirichlet Allocation, the initial topic model pro-
posed by Blei et al. [7] has been extended and modified in
several ways. Variations in the graphical model include the
correlated model [5], the hierarchical Dirichlet process model
[25], the hierarchical topic model [4]; and the dynamic topic
model [6]. Gruber et al. [14] modifies the original graphical
model to include a Markov chain in the topic assignment of
words, in the so called Hidden Topic Markov Model, leaving
the bag-of-words approach and modeling the document as a
Markov chain. As for distributed and parallelized solutions,
Smola and Narayanamurthy [24] proposed an architecture
for large scale parallel topic modeling with good results.

Airoldi et al. [1] analysed the effect of varying the source
text and inference strategies for PNAS biological sciences
publications. Newman et al. [20] proposed a customized
graphic model which includes named entity words as extra
source of text but with its own hyperparameter estimation,
directly learning the entity-topic relationship and making
better predictions about entities.

We investigate the effect of varying the source text ex-
tracting meaningful information with shallow parsing over
the resulting latent structure of categories, as well as their
quality. Shallow parsing is frequently reduced to sequence
labeling problems, and most of the previous work uses ma-
chine learning approaches. Most of the work tackles the
task of extracting noun phrases with structured predictors
[23, 18]. Although other chunk types have not received the
same attention as NP chunks, Buchholz et al. [9] present
excellent results for NP, VP, PP, ADJP and ADVP chunks.

3. JOB ADS CORPUS
The job ads corpus was built by extracting job ads from

several popular job search websites in Peru. The data was
extracted from January to March 2015. We consider job ads
published only in January, consisting of 60,000 ads, for pro-
totyping and preliminary experiments. Since the same job
ad can be published in more than one website, we consider
it as repeated if the same description of the position is found
within the last fifteen days in the database. Furthermore, as
our data of interest corresponds to engineering positions, our
implemented profession recognizer, as described in Section
4, was used to select job ads requesting engineering profes-
sions, obtaining roughly 9,000 job ads. Our initial number
of engineering majors was 30, however, we discarded ma-
jors with less than 50 job ads, ending up with a total of 23
engineering majors.

4. SHALLOW PARSING
The task of extracting requirements, functions and profes-

sions from a job ad is reduced to a sequence labeling prob-
lem.

Since natural language processing models are very corpus
sensitive, a sample of 800 job ads, more than 130 000 words.
This amount of data gave good results for shallow parsing
(specifically for named entity extraction) in Spanish, as re-
ported by Carreras et al. [10]. This subset was manually
tagged following the CoNLL-2000 BIO tagging format, ini-

Table 1: Defined chunks and presence in corpus
Chunk Base phrase # of chunks Avg. word length
FUN VP 3291 11.09
REQ NP & VP 4833 1.84

CARR NP 2097 1.64

tially proposed by Ramshaw and Marcus (1995) [22], but
without annotating part-of-speech (POS) tags. Preliminary
experiments showed that POS information does not con-
tribute significantly to chunkers performance.

The base phrases defined are FUN (functions of the job,
VP), REQ (requirements, NP and VP) and CARR (majors,
NP). Table 1 shows the proportion in the annotated cor-
pus for each chunk defined, as well as the average length in
words.

4.1 Data preparation
Job ads often contain very sparse information like emails,

dates, office hours and salary. We treated this type of tokens
as noise and replaced them with appropriate tags (e.g. URL)
using regular expressions. Low-frequency words were filtered
as well, following Bikel et al. [3] approach.

4.2 Averaged Structured Perceptron
The structured perceptron and its averaged version was

initially introduced by Collins, 2002 [11]. They differ from
the well-known perceptron algorithm in that the output for
each training instance pair (xt, yt) ∈ T is a structure y′ ∈ Yt,
where Yt is the space of permissible structured outputs for
input x. The inference algorithm to predict y′ is problem de-
pendent. In our case, sequence labeling, a first order Viterbi
decoder is used. In each step, the candidate y′ is transformed
to a high-dimensional feature representation f(x, y) ∈ Rm

and the prediction is determined by a linear classifier based
on the dot product of this representation and a weight vector
w ∈ Rm.

In practice this algorithm can be implemented easily and
behaves remarkably well in several problems. These two
characteristics make the structured perceptron algorithm a
natural first choice for prototyping structured models.

The set of features used in the chunkers are the following.

• Trigger word features for the current word [10], only
for REQ and CARR chunkers.

• Lowercase form and position of all words in a window
of ±n words [10]. For the CARR chunker, n=2 and for
the other ones n=3.

• Stemmed form and position of previous, current and
next word.

• Part-of-list feature (list :: yi), if current word is part
of a list.

• Orthographic features, including long-word and single-
digit [10], for previous, current and next word.

• Suffix and prefix features, last and first 3 characters
respectively, for previous, current and next word.

• Word brown-cluster mapping features [19] for previous,
current and next word.



• Bigram and trigram emission features [15] for lower-
case and stemmed form of all words, as well as ortho-
graphic class, in a windows of ±2 words.

• Bigram transition features for word cluster mapping
[15], used only in REQ chunker.

• Bigram transition features [15] for lowercase and stemmed
form, as well as orthographic class, of each word in the
bigram.

• Relative position of sentence in document, if current
sentence belongs to the document border (first one or
last two sentences). Only used in FUN chunker.

5. TOPIC MODELING

5.1 Latent Dirichlet Allocation
In this section, we briefly describe the graphical model

called Latent Dirichlet Allocation (LDA) [7], originally pro-
posed for doing topic modeling. LDA is a generative proba-
bilistic model in which the data is in the form of a collection
of documents, and each document in the form of a collection
of words. The model assumes that each document is a mix-
ture of latent topics, and each topic is modeled as a mixture
of words. These random mixture distributions are consid-
ered Dirichlet-distributed to be inferred from the data. The
generative process of LDA can be described as follow:

1. For all D documents sample θd ∼ Dir(α).

2. For all T topics sample φt ∼ Dir(β).

3. For each of the Nd words υi in document d:

• Sample a topic zi ∼Multinomial(θd)

• Sample a word υi ∼Multinomial(φzi)

• Observe the word

We assume symmetric Dirichlet priors for θd and φt, as
suggested by Griffiths and Steyvers [13].

Nowadays, in the literature there are several learning algo-
rithms for LDA. Regarding inference strategies for the mod-
els, we make use of Gibbs Sampling as described in [13] and
the Variational Expectation - Maximization (VEM) algo-
rithm as described in [7].

5.2 Experiment configuration
We compare six LDA models in a 2x3 layout, as sum-

marized in Table 2. This analysis approach, suggested by
Airoldi et al. [1], aims to explore the effect over model di-
mensionality, of varying the data source (all the text from
the ad versus text extracted by the chunkers) and using dif-
ferent hyperparameters inference strategies.

We explore models both estimating and fixing the latent
categories proportions per document hyperparameter (α).
When estimating α, the initial value is set to 5/K, as sug-
gested by Griffiths and Steyvers [13]. Once a value of K in
which the global or a local minimum is spotted for the es-
timated α case, a grid search over α is performed for that
value of K in order to find the best α for the fixed-case. This
strategy follows the conclusion that the VEM inference al-
gorithm estimates too low α hyperparameters, as reported
by Asuncion et al. [2]. Low α hyperparameters cause the
model to assign few topics per document, only one in the
worse case.

Table 2: Mixed-membership models in the analysis
VEM with es-
timated alpha

VEM with
fixed alpha

Gibbs with es-
timated alpha

Full text model 1 model 2 model 3

Text chunks model 4 model 5 model 6

Table 3: Feature set sizes and chunkers’ perfor-
mance

Chunker # Feat. P R F1 BIO Acc.
FUN 503701 61.1 62.3 61.7 93.4
REQ 605864 77.6 55.9 65.0 97.1

CARR 215143 87.2 86.9 87.0 99.5

5.3 Dimensionality selection
Each time we fit a mixed-membership model to data,

we must specify the number of latent categories, K, in the
model. The goal of model selection is to find K*, the number
of latent categories that is optimal in some sense. We use
10-fold cross-validation following the approach described in
[1], and widely used in other machine learning applications.
First, we split the N job ads into 10 batches. Then, we es-
timate the model parameters using the ads in four batches,
and we calculate the posterior perplexity of the ads in the
fifth held-out batch. This approach leads to summarize how
good a model fits for a given K, on a batch of ads not
included in the estimation. We consider a wide range of
number of latent categories as follows: increments of 5 for
5≤K≤10, increments of 10 for 60≤K≤120, and increments
of 50 for 150≤K≤200. Thus, we fit the models a total of 60
times (10 times in cross-validation for each of 6 models) for
each of 24 values of K.

6. EXPERIMENTS

6.1 Shallow Parsing
The annotated dataset is divided in 70, 15 and 15 per-

cent for training, validation and testing, respectively. The
standard evaluation metrics for a chunker are precision P
(fraction of output chunks that exactly match the refer-
ence chunks), recall R (fraction of reference chunks returned
by the chunker), and their harmonic mean, the F1 score
F1 = 2× P × R/(P + R). The accuracy rate for individual
labeling decisions is over-optimistic as an accuracy measure
for shallow parsing, given that O labels are more frequent.
Even so, we report BIO accuracy for reference.

Table 3 shows results for the chunkers. It can be observed
that CARR chunker shows the best performance. This can
be explained by the fact that majors are mostly mentioned in
determined word patterns in job ads. For the FUN chunker,
taking advantage of the fact that functions are not men-
tioned in the beginning nor the end of the ad improves the
precision significantly in comparison to early experiments.
In addition, FUN chunks mostly appear at the beginning of
the sentences.

6.2 Topic modeling

6.2.1 Dimensionality
Following the procedure described in Section 5.2, first,

we compute the average held-out perplexity for each of the



Figure 1: Average held-out perplexity as a function
of the number of latent categories K for whole text
models 1, 2 and 3 (top), and text chunks models 4,
5 and 6 (bottom).

different values of the number of latent categories, as men-
tioned in Section 5.3, for the models with the hyperparame-
ter α estimated (lines red and green in Figure 1). Then, as
can be observed in Figure 1, among the green and red lines,
only the red line (bottom) has a local minimum with the
number of latent of categories set to 26. We use this local
minimum to find an optimal value for the hyperparameter
α, as shown in Figure 2. Finally, we use this optimal value
of the hyperparameter to reveal the behavior of the models
with fixed hyperparameters (blue lines in Figure 1).

Although the blue line (bottom) in Figure 1 has a global
minimum with the number of latent categories set to 36, we
use the local minimum found in the red line (bottom) with
K set to 26. The latter because the number of engineering
majors in Peru is less than 36, and according to our criterion,
specializations converge to a mixture of common pools of
knowledge and required skills. Therefore, we think that a
value of 26 is a more reasonable choice.

6.2.2 Qualitative and quantitative analysis of inferred
categories

Regarding the dimensionality analysis, we set K to 26 as
explained in Section 6.2.1 for the analysis of inferred cate-
gories, for every LDA inference strategy.

Figure 2: Average held-out perplexity as a func-
tion of α, for mixed-membership models using all
the words from the ad (red) and using words from
the extracted chunks (blue). Both models were fit-
ted by using a number of latent categories set to
26.

Latent categories are explored examining high probability
words in each category (Tables 4, 5 and 6). In addition, the
latent category proportion in each major is investigated. For
each major, the mean of posterior membership scores of all
documents where this major was found is taken (Figure 3),
as proposed by Erosheva et al. [12]. An inspection to the
latter plot provides an idea of how related the engineering
majors are to one another by observing for each topic the
majors that have the most vivid colors.

Furthermore, we show in Figure 4 matrices for the six
mixed-membership models, which represent the similarity
of the probability distributions over categories between all
majors. This similarity is calculated using Hellinger dis-
tance. Each row and column of each matrix represent a
professional major and its similarity with other majors, re-
garding the text source and inference strategy applied. Ma-
jor names are not shown because each matrix has different
major names order in rows and columns. The purpose of
Figure 4 is to unveil the effect of how professional majors
are grouped.

In both graphics (Figures 3 and 4), it can be observed
that for the case of the text chunks models (models 4,5 and
6), getting rid of irrelevant words (ignored by the chunkers)
has the effect of smoothing the probability distribution over
topics. For instance, in Figure 3, for whole-text models 1, 2
and 3, the job ads for agricultural engineering basically just
talks about one topic.

On the other hand, for text-chunk models 4, 5 and 6,
the major now talks about more than one topic with similar
proportions. This phenomenon also appears in the Hellinger
matrices (Figure 4) in which by using words from all the
text causes the majors have high proportions in few topics.
Thus the plot ends up with lots of blue squares which means
there is no relationship between the two majors. Whereas
for the case of using words from the extracted chunks the
topic proportions are more uniformly distributed. Thus the
plot contains less blue squares and reveal more significant
relationships between the majors.

A closer look at Figure 3 allows to spot three main cate-



Figure 3: Estimated average membership of engineering majors in the 26 latent categories for mixed-
membership models 1-6 in Table 2.

Figure 4: Similarity matrices using Hellinger distance between discrete distributions (categories proportion
over majors), for each of the six mixed-membership models in Table 2.



gories behaviors under the effect of variation of source text
(whole text versus text chunks), as follows.

• Joining of redundant categories
Consider the majors of Mechanics and Mechatronics
Engineering for models with VEM inference algorithm
with fixed alpha (models 2 and 5). In Figure 3, for
whole-text model 2, categories 21 and 23 are predomi-
nant and have almost the same high category propor-
tion. It can be seen in Table 4 that these categories
are technically equivalent.

On the other hand, for text-chunk model 5, it can be
seen that only category 12 is predominant in these ma-
jors. Table 4 confirms that its content is the combi-
nation of the categories separated in the whole text
model. The same behaviour is observed when explor-
ing Mining and Geological Engineering, where cate-
gories 3 and 10 for model 2 are combined into category
21 in model 5.

• Splitting in two or more detailed categories
Consider the major of Geological Engineering for mod-
els with VEM inference algorithm with estimated al-
pha (models 1 and 4). In Figure 3 for whole-text model
1, category 15 is predominant in the major. Explo-
ration of this category revealed that its contents are
related to personnel and risk management, as can be
appreciated in Table 5. On the other hand, for text-
chunk model 4, it can be observed that categories 19
and 26 are predominant and with almost the same pro-
portion. A closer exploration revealed that category
19 is related to personnel management and 26 to risk
management, i.e. category 15 in the previous model
was splitted.

• Persistence of latent structure
There are cases where the number of predominant cat-
egories does not change. Consider the majors of Sys-
tems and Informatics Engineering for the models with
Gibbs sampling (3 and 6). For whole-text model 3, it
can be observed that categories 5 and 23 are predom-
inant and with almost the same proportion. Likewise,
for text-chunk model 6, categories 5 and 26 present
the same behaviour. Table 6 shows that the content
of these categories is maintained in both models.

The behaviour of categories over Industrial Engineering
deserves closer attention. It can be observed that in all
the analysed models, the latent structure of categories over
this major persist, i.e. their proportions over this major
present low variance. This can be interpreted as the fact
that knowledge and skills, once exclusive of this major, are
nowadays required for most majors and areas.

7. CONCLUSIONS
Throughout the analysis of multiple variants of mixed-

membership models, consistent results support the fact that
quality of inferred categories significantly improves when us-
ing only text extracted by shallow parsing rather that the
whole document. In our case study, the relevant text con-
stitutes academic background and skills required in job ads.

Compared to categories inferred using whole-text models,
text-chunk models generate categories that join redundant

Table 4: Categories behaviour: joining of redundant
categories

VEM with fixed α & whole text
(model 2)

VEM with fixed
α & text chunks
(model 5)

Cat.21 Cat.23 Cat.12
maintenance maintenance maintenance
technician technician mechanic
mechanic industrial electricity

garage plant electronic
machinery mechanic industrial

repair production electric
replacement control plant

service electricity supervisor
customer machinery machinery
preventive electronic replacement

Table 5: Categories behaviour: splitting in two or
more detailed categories

VEM with esti-
mated α & whole
text (model 1)

VEM with estimated α & text
chunks (model 4)

Cat.15 Cat.19 Cat.26
assurance management assurance

management specialization environmental
industrial system industrial

occupational entitled occupational
standard coordinator management

risk iso standard
iso industrial risk

supervisor mastery prevention
procedure operation sanitation
prevention manager incident



Table 6: Categories behaviour: persistence of latent structure
Gibbs with estimated α &
whole text (model 3)

Gibbs with estimated α &
text chunks (model 6)

Cat.5 Cat.23 Cat.5 Cat.26
system technician system system

development system informatic analyst
analyst informatic computer programmer

sql computer electronic sql
programmer configuration windows informatic
programming windows communication programming

informatic user operative server
java service office java

server installation technician oracle
application electronic configuration visual

ones and split to high skill-specific categories. In addition,
fine-grained categories are preserved with text-chunk mod-
els.

A more in-depth study of semantic patterns, inferred from
bigger job ads data (e.g. a whole year time span) could lead
to reveal connections that get closer to the way industry
treats engineering majors in reality. In addition, these re-
sults could be used by educational institutions to train pro-
fessionals in what the labor market really demands. And
help professionals to build a more successful career path in
industry.
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